Firstly, this collation of information, and in particular its organisation, owes an obvious, substantial debt of gratitude to Wilfrid Keller’s Fermat number factoring status page for so easily making the data on the known Fermat numbers not merely available, but coherent and logical to grasp and assimilate.
Secondly, a word or three on the comparative, smaller. The Fermat primes (up to F4) might be regarded as small, but generally Fermat numbers are anything but small. Fermat numbers grow so quickly that beyond about F32, the only tool currently available is essentially just trial division; the known k·2n+1 form of Fermat divisors allows confidence in searching for them. Other advanced methods of factoring that have proved invaluable on the smaller Fermat numbers, or primality tests such as Pépin’s theorem, become more difficult and probably impossible with current hardware and software somewhere beyond this point.
Correspondingly we have somewhat more information on the Fermat numbers that are within reach, so this page confines itself to re-organising the data on these. Several obvious points of difference from Keller’s page may be noticed, such as the colour coding to give a visual indicator to the character of the various Fermat numbers when gathering them together into a continuous list of each type: their standard notation factorisation, and k, n values of factors.
Citations and direct links to original sources are also provided where possible, and in providing dates, italics denote a ‘terminus ante quem’; if a manuscript, letter, or lecture were delivered on a given day, then the discovery contained within must naturally have occurred at a prior date (and most papers helpfully indicate both initial received dates as well as dates of revision). These italics have additional information available when the cursor hovers above them.
The section below on compositeness proofs of Fermat numbers and cofactors is a very short summary of a larger historical study of the subject available here.
Status: | 5 prime (0 ≤ m ≤ 4); | ||
325 composite; 323 completely or partially factored (5 ≤ m ≤ 18,233,954): | |||
7 completely factored (5 ≤ m ≤ 11); | |||
17 incompletely factored, with composite cofactor (12 ≤ m ≤ 30, m ≠ 20, 24); | |||
299 incompletely factored, with cofactor of unknown character (31 ≤ m ≤ 18,233,954); | |||
2 composite, but without known factors (m = 20, 24); | |||
infinitely many of unknown character, whether prime or composite (m ≥ 33). | |||
Number of factors | 5 ≤ m < 33 | m ≥ 33 | Totals |
6 prime factors: | m = 12 | 6 | |
5 prime factors: | m = 11 | 5 | |
4 prime factors: | m = 13 m = 10 | 8 | |
3 prime factors: | m = 15, 19, 25 m = 9 | m = 52, 287 | 18 |
2 prime factors: | m = 16, 17, 18, 27, 30 m = 5, 6, 7, 8 | m = 36, 38, 39, 42, 77, 147, 150, 251, 284, 416, 417 | 40 |
1 prime factor: | m = 14, 21, 22, 23, 26, 28, 29 m = 31, 32 | m = 37, 40, 43, 48, … (280 more) | 293 |
0 known factors: | m = 20, 24 | m = 33, 34, 35, 41, 44, 45, 46, 47, 49, 50, 51, … | 0 |
total 370 |
F0 = 3 | |||
F1 = 5 | |||
F2 = 17 | |||
F3 = 257 | Number of | ||
F4 = 65,537 | prime factors | ||
F5 = 641 · 6,700,417 | 2 | ||
F6 = 274,177 · 67,280,421,310,721 | 2 | ||
F7 = 59,649,589,127,497,217 · 5,704,689,200,685,129,054,721 | 2 | ||
F8 = 1,238,926,361,552,897 · p62 | 2 | ||
F9 = 2,424,833 · 7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 · p99 | 3 | ||
F10 = 45,592,577 · 6,487,031,809 · 4,659,775,785,220,018,543,264,560,743,076,778,192,897 · p252 | 4 | ||
F11 = 319,489 · 974,849 · 167,988,556,341,760,475,137 · 3,560,841,906,445,833,920,513 · p564 | 5 | ||
F12 = 114,689 · 26,017,793 · 63,766,529 · 190,274,191,361 · 1,256,132,134,125,569 · | |||
568,630,647,535,356,955,169,033,410,940,867,804,839,360,742,060,818,433 · c1,133 | 6 | ||
F13 = 2,710,954,639,361 · 2,663,848,877,152,141,313 · 3,603,109,844,542,291,969 · | |||
319,546,020,820,551,643,220,672,513 · c2,391 | 4 | ||
F14 = 116,928,085,873,074,369,829,035,993,834,596,371,340,386,703,423,373,313 · c4,880 | 1 | ||
F15 = 1,214,251,009 · 2,327,042,503,868,417 · | |||
168,768,817,029,516,972,383,024,127,016,961 · c9,808 | 3 | ||
F16 = 825,753,601 · 188,981,757,975,021,318,420,037,633 · c19,694 | 2 | ||
F17 = 31,065,037,602,817 · | |||
7,751,061,099,802,522,589,358,967,058,392,886,922,693,580,423,169 · c39,395 | 2 | ||
F18 = 13,631,489 · 81,274,690,703,860,512,587,777 · c78,884 | 2 | ||
F19 = 70,525,124,609 · 646,730,219,521 · | |||
37,590,055,514,133,754,286,524,446,080,499,713 · c157,770 | 3 | ||
F20 = C315,653 | 0 | ||
F21 = 4,485,296,422,913 · c631,294 | 1 | ||
F22 = 64,658,705,994,591,851,009,055,774,868,504,577 · c1,262,577 | 1 | ||
F23 = 167,772,161 · c2,525,215 | 1 | ||
F24 = C5,050,446 | 0 | ||
F25 = 25,991,531,462,657 · 204,393,464,266,227,713 · 2,170,072,644,496,392,193 · c10,100,842 | 3 | ||
F26 = 76,861,124,116,481 · c20,201,768 | 1 | ||
F27 = 151,413,703,311,361 · 231,292,694,251,438,081 · c40,403,531 | 2 | ||
F28 = 1,766,730,974,551,267,606,529 · c80,807,103 | 1 | ||
F29 = 2,405,286,912,458,753 · c161,614,233 | 1 | ||
F30 = 640,126,220,763,137 · 1,095,981,164,658,689 · c323,228,467 | 2 | ||
F31 = 46,931,635,677,864,055,013,377 · u646,456,971* | 1 | ||
F32 = 25,409,026,523,137 · u1,292,913,974* | 1 | ||
F33 = U2,585,827,973 | 0 |
m | k | n | Year | Discoverer | Method | Citation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | } } } } |
Aug 1640 | P. de Fermat | [F1991] | ||||||||||
1 | 1 | 2 | ||||||||||||||
2 | 1 | 4 | ||||||||||||||
3 | 1 | 8 | ||||||||||||||
4 | 1 | 16 | ||||||||||||||
5 | 5 52,347 | 7 7 | } | 7 Oct 1732 | L. Euler | trial division | [E1738] | |||||||||
6 | 1,071 262,814,145,745 | 8 8 |
} | 1 Jan 1855 | T. Clausen; F. Landry, 1880 (Primality of k12 cofactor: H. Le Lasseur, 1880) |
[W1993] | [B1964, L1880] | |||||||||
7 | 116,503,103,764,643 11,141,971,095,088,142,685 |
9 9 | } | 13 Sep 1970 | M. A. Morrison & J. Brillhart | continued fraction | [MB1971, MB1975] | |||||||||
8 | 604,944,512,477 k59 | 11 11 |
} | 18 Sep 1980 | R. P. Brent & J. M. Pollard (Primality of k59 cofactor: H. C. Williams) |
Pollard rho | [BP1981] | |||||||||
k59 = 45,635,566,267,264,637,582,599,393,652,151,804,972,681,268,330,878,021,767,715 | ||||||||||||||||
9 | 37 | 16 | 14 May 1903 | A. E. Western | trial | [CW1904] | ||||||||||
k46 k96 | 11 11 | } | 15 Jun 1990 | A. K. Lenstra, M. S. Manasse, & a large team (Primality: A. M. Odłyżko) |
SNFS | [LLMP1993] | ||||||||||
k46 = 3,640,431,067,210,880,961,102,244,011,816,628,378,312,190,597 k96 = 362,128,936,829,849,024,182,024, 971,631,805,407,255,830,459,520,272,960,891,514,314,523,640,507,570,656,742,232,821,636,569,307 | ||||||||||||||||
10 | 11,131 | 12 | 15 Aug 1953 | J. L. Selfridge | trial | [S1953] | ||||||||||
395,937 | 14 | 1962 | J. Brillhart | trial | [B1963] | |||||||||||
k37 | 12 | 20 Oct 1995 | R. P. Brent | ECM | [B1999] | |||||||||||
k248 | 13 | 1995 | R. P. Brent | |||||||||||||
k37 = 1,137,640,572,563,481,089,664,199,400,165,229,051 k248 = 15,922,836,231,138,695,035,093,355,565,980, 212,884,107,486,675,001,451,682,970,617,160,257,863,311,947,248,971,452,664,548,043,591,906,237, 644,522,563,833,477,152,239,872,181,860,196,421,948,439,690,685,317,315,553,051,258,143,326,480, 945,577,516,888,976,026,564,843,006,895,573,500,498,133,825,643,594,092,555,886,322,403,200,003 | ||||||||||||||||
11 | 39 | 13 | 1899 | A. J. C. Cunningham | trial | [CW1904] | ||||||||||
119 | 13 | 1899 | A. J. C. Cunningham | |||||||||||||
10,253,207,784,531,279 | 14 | 17 May 1988 | R. P. Brent | ECM | [B1989, B1996] | |||||||||||
434,673,084,282,938,711 | 13 | 13 May 1988 | R. P. Brent | ECM | ||||||||||||
k560 | 13 | 20 Jun 1988 | R. P. Brent (Primality: F. J. Morain) | ECPP | ||||||||||||
k560 = 21,174,615,134,173,285,574,982,784,529,334,689,743,337,627,529,744,150,958, 172,243,537,764,108,788,193,250,592,967,656,046,192,485,007,078,101,912,652,776,662,834,559,689, 734,635,521,223,667,093,019,353,364,100,169,585,433,799,507,320,937,371,688,159,076,970,887,037, 493,581,569,352,118,776,521,064,958,422,163,933,812,649,044,026,502,558,555,356,775,560,067,461, 648,993,426,750,049,061,580,191,794,744,396,103,493,131,476,781,686,200,989,377,719,638,682,976, 424,873,973,574,085,951,980,316,371,376,859,104,992,795,318,729,984,801,869,785,145,588,809,492, 038,969,317,284,320,651,500,418,425,949,345,494,944,448,110,057,412,733,268,967,446,592,534,704, 415,768,023,768,439,849,177,511,907,048,426,136,846,561,848,711,377,379,319,145,718,177,075,053 | ||||||||||||||||
12 | 7 | 14 | 30 Nov 1877 | I. M. Pervushin; 1878, F. É. A. Lucas | trial | [B1878, B1879] | ||||||||||
397 | 16 | 14 May 1903 | A. E. Western | trial | [CW1904] | |||||||||||
973 | 16 | 14 May 1903 | A. E. Western | trial | ||||||||||||
11,613,415 | 14 | 20 May 1974 | J. C. Hallyburton & J. Brillhart | trial | [HB1975] | |||||||||||
76,668,221,077 | 14 | 25 Jul 1986 | R. J. Baillie | Pollard p–1 | ||||||||||||
k50 | 15 | 27 Mar 2010 | M. Vang, Zimmerman & Kruppa | ECM | [V2010] | |||||||||||
k50 = 17,353,230,210,429,594,579,133,099,699,123,162,989,482,444,520,899 | ||||||||||||||||
13 | 41,365,885 | 16 | 20 May 1974 | J. C. Hallyburton & J. Brillhart | trial | [HB1975] | ||||||||||
20,323,554,055,421 | 17 | 5 Jan 1991 | R. E. Crandall | ECM | ||||||||||||
6,872,386,635,861 | 19 | 9 May 1991 | R. E. Crandall | ECM | ||||||||||||
609,485,665,932,753,836,099 | 19 | 16 Jun 1995 | R. P. Brent | ECM | [BCDH2000] | |||||||||||
14 | k49 | 16 | 3 Feb 2010 | T. Rajala, Woltman | ECM | [R2010] | ||||||||||
k49 = 1,784,180,997,819,127,957,596,374,417,642,156,545,110,881,094,717 | ||||||||||||||||
15 | 579 | 21 | 1925 | M. B. Kraïtchik | trial | [K1952] | ||||||||||
17,753,925,353 | 17 | 4 Aug 1987 | G. B. Gostin | trial | [G1995] | |||||||||||
1,287,603,889,690,528,658,928,101,555 | 17 | 3 Jul 1997 | R. E. Crandall & C. van Halewyn | ECM | [BCDH2000] | |||||||||||
16 | 1,575 | 19 | 14 Aug 1953 | J. L. Selfridge | trial | [S1953] | ||||||||||
180,227,048,850,079,840,107 | 20 | Dec 1996 | R. E. Crandall & K. Dilcher | ECM | [BCDH2000] | |||||||||||
17 | 59,251,857 | 19 | May 1978 | G. B. Gostin | trial | [G1980] | ||||||||||
k44 | 19 | 15 Mar 2011 | D. Bessell, Woltman | ECM | [B2011] | |||||||||||
k44 = 14,783,975,791,554,494,074,552,473,179,612,897,725,474,511 | ||||||||||||||||
18 | 13 | 20 | 14 May 1903 | A. E. Western (Prime: P. P. H. Seelhoff, 1886) | trial | [CW1904] | ||||||||||
9,688,698,137,266,697 | 23 | 16 Apr 1999 | R. E. Crandall, R. J. McIntosh, & C. Tardif | ECM | [BCDH2000] | |||||||||||
19 | 33,629 | 21 | 16 Nov 1962 | H. I. Riesel | trial | [R1963] | ||||||||||
308,385 | 21 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | |||||||||||
8,962,167,624,028,624,126,082,526,703 | 22 | 18 Jul 2009 | D. Bessell, Woltman | ECM | [W2009] | |||||||||||
21 | 534,689 | 23 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | ||||||||||
22 | 3,853,959,202,444,067,657,533,632,211 | 24 | 26 Mar 2010 | D. Bessell, Woltman | ECM | [D2010] | ||||||||||
23 | 5 | 25 | 5 Feb 1878 | I. M. Pervushin | trial | [B1879] | ||||||||||
25 | 48,413 | 29 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | ||||||||||
1,522,849,979 | 27 | 7 Aug 1985 | G. B. Gostin | trial | [G1995] | |||||||||||
16,168,301,139 | 27 | 16 Dec 1987 | P. B. McLaughlin | trial | ||||||||||||
26 | 143,165 | 29 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | ||||||||||
27 | 141,015 | 30 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | ||||||||||
430,816,215 | 29 | 21 Feb 1985 | G. B. Gostin | trial | [G1995] | |||||||||||
28 | 25,709,319,373 | 36 | 5 Feb 1997 | T. Taura | trial | [CMP2003] | ||||||||||
29 | 1,120,049 | 31 | 17 Oct 1980 | G. B. Gostin & P. B. McLaughlin | trial | [GM1982] | ||||||||||
30 | 149,041 | 32 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | ||||||||||
127,589 | 33 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] | |||||||||||
31 | 5,463,561,471,303 | 33 | 12 Apr 2001 | A. Kruppa & T. Forbes | trial | [CMP2003] | ||||||||||
32 | 1,479 | 34 | 22 Aug 1963 | C. P. Wrathall | trial | [W1963] |
m | Factor | B1 | B2 | σ | g | |||||
---|---|---|---|---|---|---|---|---|---|---|
10 | k37·212+1 | 2,000,000 | 14,152,267 | 4,659,775,785,220,018,543,260,885,870,817,648,693,860 = 22 · 32 · 5 · 149 · 163 · 197 · 7,187 · 18,311 · 123,677 · 226,133 · 314,263 · 4,677,583 | ||||||
11 | k17·214+1 | 16,000 | not given | |||||||
k18·213+1 | 16,000 | not given | ||||||||
12 | k50·215+1 | 43,000,000 | 199,103,726,650 | 1,428,526,317 | 568,630,647,535,356,955,169,033,412,162,316,189,313,022,429,279,110,256 = 24 · 32 · 7 · 17 · 293 · 349 · 8,821 · 23,753 · 65,123 · 2,413,097 · 9,027,881 · 23,759,413 · 45,947,380,867 | |||||
13 | k14·217+1 | |||||||||
k13·219+1 | ||||||||||
k21·219+1 | 100,000 100,000 500,000 | B3 = 485,301 3,542,000 stage 2 un-needed | see [BCDH2000] 4,009,189 8,020,345 | 319,546,020,820,518,229,496,965,479 = 32 · 72 · 13 · 31 · 3,803 · 6,037 · 9,887 · 28,859 · 274,471 317,976,969,488,002,049,294,329,728 = 27 · 3 · 127 · 3,083 · 3,539 · 9,649 · 18,239 · 3,395,653 319,546,020,820,551,567,984,515,352 = 23 · 3 · 17 · 23 · 41 · 113 · 271 · 3,037 · 10,687 · 12,251 · 68,209 | ||||||
14 | k49·216+1 | 110,000,000 | 11,000,000,000 | 8,585,974,330,888,598 | 116,928,085,873,074,369,829,035,993,372,903,082,226,176,977,098,089,788 = 22 · 3 · 53 · 107 · 3,433 · 37,087 · 110,323 · 128,321 · 1,738,307 · 9,338,881 · 74,968,979 · 783,277,631 | |||||
15 | k28·217+1 | 10,000,000 | 500,000,000 | 253,301,772 | 168,768,817,029,516,992,836,491,975,362,208 = 25 · 3 · 4,889 · 5,701 · 9,883 · 11,777 · 5,909,317 · 91,704,181 | |||||
16 | k21·220+1 | 400,000 200,000 | 20,000,000 10,000,000 | 1,944,934,539 125,546,653 | 188,981,757,975,005,913,471,235,500 = 22 · 3 · 53 · 7 · 13 · 19 · 83 · 113 · 2,027 · 386,677 · 9,912,313 188,981,757,975,004,093,943,814,852 = 22 · 32 · 72 · 109 · 761 · 2,053 · 20,297 · 101,483 · 305,419 | |||||
17 | k44·219+1 | 44,000,000 | 4,400,000,000 | 10,717,701,036,773 | 7,705,935,574,284,557,194,893,456,578,699,598,773,615,181,874,764 = 22 · 3 · 541 · 2,713 · 5,153 · 23,773 · 152,363 · 239,387 · 19,359,383 · 22,095,751 · 230,254,627 | |||||
18 | k16·223+1 | 100,000 | 4,000,000 | 731,185,968 | 81,274,690,704,014,912,758,776 = 23 · 3 · 59 · 367 · 389 · 3,613 · 50,101 · 2,221,069 | |||||
19 | k28·222+1 | 3,000,000 | 300,000,000 | 7,121,198,363,696,307 | 37,590,055,514,133,754,043,447,773,966,186,464 = 25 · 3 · 11 · 181 · 263 · 4,217 · 38,867 · 244,451 · 1,779,623 · 10,487,459 | |||||
22 | k28·224+1 | 1,000,000 | 100,000,000 | 8,776,953,345,765,668 | 64,658,705,994,591,850,983,958,649,757,139,080 = 23 · 3 · 5 · 11 · 23 · 193 · 4,451 · 862,231 · 886,069 · 898,769 · 3,610,351 |
m | Year | known/prime factors | Digits | Earliest prover(s) | Method(s) | Status | Citation(s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 6 | 1877 | 2 0 (2) | 10 20 | } | F. É. A. Lucas | Pell sequence | Clausen’s F6 factoring was unpublished; subsequently refactored |
[L1877a, L1877b] | |||||||
7 | 1905 | 0 | 39 | J. C. Morehead; A. E. Western | Pépin | subsequently factored | [M1905, W1905] | ||||||||
8 | 1909 | 0 | 78 | J. C. Morehead & A. E. Western | Pépin | subsequently factored | [MW1909] | ||||||||
9 | 1967 | 1 | 148 | J. Brillhart | subsequently factored | [HB1975] | |||||||||
10 | 1952 | 0 | 309 | R. M. Robinson | Pépin | subsequently factored | [R1954] | ||||||||
1967 | 2 | 291 | J. Brillhart | subsequently factored | [HB1975] | ||||||||||
11 | 1979 | 2 | 606 | S. S. Wagstaff | subsequently factored | [G1980] | |||||||||
1988 | 3 | 584 | R. P. Brent | subsequently factored | [B1989, B1996] | ||||||||||
12 | 1979 | 4 | 1,202 | S. S. Wagstaff | new factor discovered | [G1980] | |||||||||
1986 | 5 | 1,187 | R. J. Baillie | new factor discovered | [W1987] | ||||||||||
2010 | 6 | 1,133 | M. Vang; S. Batalov; A. Schindel | yet to be factored | [V2010] | ||||||||||
13 | 1960 | 0 | 2,467 | G. A. Paxson | Pépin | new factor discovered | [P1961] | ||||||||
1979 | 1 | 2,454 | S. S. Wagstaff | new factor discovered | [G1980] | ||||||||||
1991 | 2 | 2,436 | A. K. Lenstra, W. Keller | new factor discovered | |||||||||||
1991 | 3 | 2,417 | R. E. Crandall | new factor discovered | |||||||||||
1995 | 4 | 2,391 | R. P. Brent | yet to be factored | [BCDH2000] | ||||||||||
14 | 1961 | 0 | 4,933 | A. Hurwitz & J. L. Selfridge | Pépin | new factor discovered | [SH1964] | ||||||||
2010 | 1 | 4,880 | W. B. Lipp; R. D. Silverman; T. Rajala; P. Moore | Various inc. Suyama | yet to be factored | [R2010] | |||||||||
15 | 1984 | 1 | 9,856 | H. Suyama | Suyama | new factor discovered | [S1984] | ||||||||
1987 | 2 | 9,840 | H. Suyama; R. J. Baillie | Suyama | new factor discovered | [S1987, W1987] | |||||||||
1997 | 3 | 9,808 | R. P. Brent & R. E. Crandall | yet to be factored | [BCDH2000] | ||||||||||
16 | 1987 | 1 | 19,720 | R. J. Baillie | new factor discovered | [W1987] | |||||||||
1996 | 2 | 19,694 | R. P. Brent & R. E. Crandall | yet to be factored | [BCDH2000] | ||||||||||
17 | 1987 | 1 | 39,444 | R. J. Baillie | new factor discovered | ||||||||||
2011 | 2 | 39,395 | D. Chia; T. Sorbera | yet to be factored | [B2011] | ||||||||||
18 | 1990 | 1 | 78,907 | D. V. & G. V. Chudnovsky | yet to be factored | [W1990] | |||||||||
1999 | 2 | 78,884 | R. E. Crandall | yet to be factored | |||||||||||
19 | 1993 | 2 | 157,804 | R. E. Crandall, J. Doenias, C. Norrie & J. Young | Suyama | new factor discovered | [CDNY1995] | ||||||||
2009 | 3 | 157,770 | J. R. King; A. Kruppa; G. Childers | yet to be factored | [W2009] | ||||||||||
20 | 1987 | 0 | 315,653 | J. Young & D. A. Buell | Pépin | no factors known | [YB1988] | ||||||||
21 | 1993 | 1 | 631,294 | R. E. Crandall, J. Doenias, C. Norrie & J. Young | Suyama | yet to be factored | [CDNY1995] | ||||||||
22 | 1993 | 0 | 1,262,612 | { | R. E. Crandall, J. Doenias, C. Norrie & J. Young; V. Trevisan & J. B. Carvalho | Pépin | new factor discovered | [CDNY1995, TC1995] | |||||||
2010 | 1 | 1,262,577 | D. Domanov; S. Yamada | Suyama | yet to be factored | [D2010, Y2010] | |||||||||
23 | 2000 | 1 | 2,525,215 | R. E. Crandall, E. W. Mayer & J. S. Papadopoulos | Suyama | yet to be factored | [CMP2003] | ||||||||
24 | 1999 | 0 | 5,050,446 | R. E. Crandall, E. W. Mayer & J. S. Papadopoulos | Pépin | no factors known | [CMP2003] | ||||||||
25 | 2009 | 3 | 10,100,842 | S. Yamada; A. T. Höglund | Euler; Fermat-PRP | yet to be factored | [H2009a, Y2009] | ||||||||
26 | 2009 | 1 | 20,201,768 | A. T. Höglund | Fermat-PRP | yet to be factored | [H2009b] | ||||||||
27 | 2010 | 2 | 40,403,531 | A. T. Höglund | Fermat-PRP | yet to be factored | [H2010] | ||||||||
28 | 2022 | 1 | 80,807,103 | E. W. Mayer | Suyama | yet to be factored | [M2022] | ||||||||
29 | 2022 | 1 | 161,614,233 | E. W. Mayer | Suyama | yet to be factored | [M2022] | ||||||||
30 | 2022 | 2 | 323,228,467 | E. W. Mayer | Suyama | yet to be factored | [M2022] |
[B2011] | D. Bessell, New factor for F17, mersenneforum.org thread 10835 post 1 (2011); cofactor compositeness tests appear in replies at post 6 (D. Chia) and post 9 (T. Sorbera) | |
[B1964] | K.-R. Biermann, Thomas Clausen, Mathematiker und Astronom, J. für die reine und angewandte Mathematik 216 (1964), 159–198. DOI 10.1515/crll.1964.216.159 (see page 185, relating a letter by Clausen to C. F. Gauss, dated 1 January 1855) | |
[B1878] | V. Bouniakowsky, Nouveau cas de divisibilité des nombres de la forme 22m+1, trouvé par le révérend père J. Pervouchine, Bulletins de l’Académie des sciences de Saint-Pétersbourg 24 (1878), 559. | |
[B1879] | V. Bouniakowsky, Encore un nouveau cas de divisibilité des nombres de la forme 22m+1, Bulletins de l’Académie des sciences de Saint-Pétersbourg 25 (1879), 63–64 | |
[B1989] | R. P. Brent, Factorization of the eleventh Fermat number (preliminary report), Amer. Math. Soc. Abstracts 10 (1989), 89T-11-73 | |
[B1996] | R. P. Brent, Factorization of the tenth and eleventh Fermat numbers, Report TR-CS-96-02, Computer Sciences Laboratory, Australian National Univ., Canberra, Feb. 1996, 25 pp. | |
[B1999] | R. P. Brent, Factorization of the tenth Fermat number, Math. Comp. 68 (1999), 429–451. MR 1489968, DOI 10.1090/S0025-5718-99-00992-8 | |
[BCDH2000] | R. P. Brent, R. E. Crandall, K. Dilcher, C. van Halewyn, Three new factors of Fermat numbers, Math. Comp. 69 (2000), 1297–1304. MR 1697645, DOI 10.1090/S0025-5718-00-01207-2 | |
[BP1981] | R. P. Brent, J. M. Pollard, Factorization of the eighth Fermat number, Math. Comp. 36 (1981), 627–630. MR 606520, DOI 10.1090/S0025-5718-1981-0606520-5 | |
[B1963] | J. Brillhart, Some miscellaneous factorizations, Math. Comp. 17 (1963), 447–450. DOI 10.1090/S0025-5718-63-99176-2 | |
[CDNY1995] | R. E. Crandall, J. Doenias, C. Norrie, J. Young, The twenty-second Fermat number is composite, Math. Comp. 64 (1995), 863–868. MR 1277765, DOI 10.1090/S0025-5718-1995-1277765-9 | |
[CMP2003] | R. E. Crandall, E. W. Mayer, J. S. Papadopoulos, The twenty-fourth Fermat number is composite, Math. Comp. 72 (2003), 1555–1572. MR 1972753, DOI 10.1090/S0025-5718-02-01479-5 | |
[CW1904] | A. J. C. Cunningham, A. E. Western, On Fermat’s numbers, Proc. Lond. Math. Soc. (2) 1 (1904), 175. DOI 10.1112/plms/s2-1.1.175 | |
[D2010] | D. Domanov, F22 factored, mersenneforum.org thread 9605; announcement, post 1; cofactor compositeness test, post 12 (2010) | |
[E1738] | L. Euler, Observationes de theoremate quodam Fermatiano, aliisque ad numeros primos spectantibus, Commentarii academiae scientiarum Petropolitanae 6 (1738), 103–107; translated from Latin by D. Zhao (2006), J. Bell (2008) | |
[F1991] | C. R. Fletcher, A reconstruction of the Frenicle–Fermat correspondence of 1640, Historia Mathematica 18 (1991), 344–351 | |
[G1980] | G. B. Gostin, A factor of F17, Math. Comp. 35 (1980), 975–976. MR 572869, DOI 10.1090/S0025-5718-1980-0572869-7 | |
[G1995] | G. B. Gostin, New factors of Fermat numbers, Math. Comp. 64 (1995), 393–395. MR 1265015, DOI 10.1090/S0025-5718-1995-1265015-9 | |
[GM1982] | G. B. Gostin, P. B. McLaughlin, Jr., Six new factors of Fermat numbers, Math. Comp. 38 (1982), 645–649. MR 645680, DOI 10.1090/S0025-5718-1982-0645680-8 | |
[HB1975] | J. C. Hallyburton, Jr., J. Brillhart, Two new factors of Fermat numbers, Math. Comp. 29 (1975), 109–112. MR 369225, DOI 10.1090/S0025-5718-1975-0369225-1. Corrigenda ibid. 30 (1976), 198. | |
[H2009/10] | A. T. Höglund, in mersenneforum.org thread 8842; compositeness test of c10,100,842 | F25 cofactor, post 51 (2009); compositeness test of c20,201,768 | F26 cofactor, post 62 (2009); compositeness test of c40,403,531 | F27 cofactor, post 64 (2010) | |
[K1952] | M. B. Kraïtchik, On the factorization of 2n ± 1, Scripta Math. 18 (1952), 39–52. | |
[L1880] | F. Landry, Sur la décomposition du nombre 264 + 1, C. R. Acad. Sci. Paris 91 (1880), 138 (see also [W1993]) | |
[LLMP1993] | A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, The factorization of the ninth Fermat number, Math. Comp. 61 (1993), 319–349. MR 1182953, DOI 10.1090/S0025-5718-1993-1182953-4, Addendum ibid. 64 (1995), 1357 | |
[L1877a] | F. É. A. Lucas, Sur la division de la circonférence en parties égales, Comptes rendus hebdomadaires des séances de l’Académie des Sciences de Paris 85 (1877), 136–139 | |
[L1877b] | F. É. A. Lucas, Considérations nouvelles sur la théorie des nombres premiers et sur la division géométrique de la circonférence en parties égales, Association française pour l’avancement des sciences, Comptes-rendus de la 6e session, Le Havre (1877), 159–167 | |
[M2022] | E. W. Mayer, Pépin tests of Fermat numbers beyond F24, mersenneforum.org thread 13610 (2013–22); results of Suyama tests for F25 to F30, “F25–F30 cofactor status, Part 2”, post 83 (2022) | |
[M1905] | J. C. Morehead, Note on Fermat’s numbers, Bull. Amer. Math. Soc. 11 (1905), 543–545. MR 1558255, DOI 10.1090/S0002-9904-1905-01255-6 | |
[MW1909] | J. C. Morehead, A. E. Western, Note on Fermat’s numbers, Bull. Amer. Math. Soc. 16 (1909), 1–6. MR 1558828, DOI 10.1090/S0002-9904-1909-01841-5 | |
[MB1971] | M. A. Morrison, J. Brillhart, The factorization of F7, Bull. Amer. Math. Soc. 77 (1971), 264. MR 268113 10.1090/S0002-9904-1971-12711-8 | |
[MB1975] | M. A. Morrison, J. Brillhart, A method of factoring and the factorization of F7, Math. Comp. 29 (1975), 183–205. MR 371800, DOI 10.1090/S0025-5718-1975-0371800-5 | |
[P1961] | G. A. Paxson, The compositeness of the thirteenth Fermat number, Math. Comp. 15 (1961), 420. MR 124264, DOI 10.1090/S0025-5718-1961-0124264-0 | |
[P1877] | T. Pépin, Sur la formule 22n + 1, Comptes rendus hebdomadaires des séances de l’Académie des Sciences de Paris 85 (1877), 329–331 | |
[R2010] | T. Rajala, GIMPS’ second Fermat factor, mersenneforum.org thread 9485, posts 1, 13, 18, and 19 (2010); cofactor compositeness tests, post 5 (W. B. Lipp); post 12 (R. D. Silverman); post 24 (P. Moore) | |
[R1963] | H. I. Riesel, A factor of the Fermat number F19, Math. Comp. 17 (1963), 458. DOI 10.1090/S0025-5718-63-99175-0 | |
[R1954] | R. M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc. 5 (1954), 842–846. MR 64787, DOI 10.1090/S0002-9939-1954-0064787-4 | |
[S1953] | J. L. Selfridge, Factors of Fermat numbers, Math. Tables Aids Comput. 7 (1953), 274–275. DOI 10.1090/S0025-5718-53-99350-8 | |
[SH1964] | J. L. Selfridge, A. Hurwitz, Fermat numbers and Mersenne numbers, Math. Comp. 18 (1964), 146–148. MR 159775, DOI 10.1090/S0025-5718-1964-0159775-8 | |
[S1984] | H. Suyama, The cofactor of F15 is composite, Abstracts Amer. Math. Soc. 5 (1984), 271–272 | |
[S1987] | H. Suyama, The new cofactor of F15 is still composite, written communication (23 October 1987) | |
[TC1995] | V. Trevisan, J. B. Carvalho, The composite character of the twenty-second Fermat number, J. Supercomputing 9 (1995), 179–182. DOI 10.1007/BF01245403 | |
[V2010] | M. Vang, F12 has a factor, mersenneforum.org thread 9610, posts 1 and 9 (2010); compositeness tests, post 2 (S. Batalov) and post 4 (A. Schindel) | |
[W1987] | S. S. Wagstaff, Jr., Update #5 to Factorizations of bn ± 1 (1987), 6 pp. | |
[W1990] | S. S. Wagstaff, Jr., Cover letter for Page 61 (1 October 1990) | |
[W1905] | A. E. Western, Note on Fermat’s numbers and the converse of Fermat’s theorem, Proc. Lond. Math. Soc (2) 3 (1905), xxi–xxii. DOI 10.1112/plms/s2-3.1.1-v | |
[W1993] | H. C. Williams, How was F6 factored? Math. Comp. 61 (1993), 463–474. MR 1182248, DOI 10.1090/S0025-5718-1993-1182248-9 | |
[W2009] | G. F. Woltman, GIMPS’ first Fermat factor, mersenneforum.org thread 8842, post 1 (2009), announcement of new factor of F19; with replies by: J. R. King, compositeness test of c157,770 | F19 cofactor, post 5 (2009); A. Kruppa, compositeness test of F19 cofactor, post 6 (2009); ‘E. P.’, compositeness test of F19 cofactor, post 9 (2009); G. Childers, compositeness test of F19 cofactor, post 14 (2009) | |
[W1964] | C. P. Wrathall, New factors of Fermat numbers, Math. Comp. 18 (1964), 324–325. MR 163868, DOI 10.1090/S0025-5718-1964-0163868-9 | |
[Y2009/10] | S. Yamada, in mersenneforum.org thread 8842; Fermat–Euler test of c10,100,842 | F25 cofactor, post 40 (2009); Suyama test of c1,262,577 | F22 cofactor, post 70 (2010) | |
[YB1988] | J. Young, D. A. Buell, The twentieth Fermat number is composite, Math. Comp. 50 (1988), 261–263. MR 917833, DOI 10.1090/S0025-5718-1988-0917833-8 |